Decolorization and COD Reduction Efficiency of Magnesium over Iron based Salt for the Treatment of Textile Wastewater Containing Diazo and Anthraquinone Dyes

نویسندگان

  • Akshaya Kumar Verma
  • Rajesh Roshan Dash
چکیده

Magnesium chloride, though cost wise roughly same as of ferrous sulphate, is less commonly used coagulant in comparison to the ferrous sulphate for the treatment of wastewater. The present study was conducted to investigate the comparative effectiveness of ferrous sulphate (FeSO4.7H2O) as iron based salt and magnesium chloride (MgCl2) as magnesium based salt in terms of decolorization and chemical oxygen demand (COD) reduction efficiency of textile wastewater. The coagulants were evaluated for synthetic textile wastewater containing two diazo dyes namely Reactive Black 5 (RB5) and Congo Red (CR) and one anthraquinone dye as Disperse Blue 3 (DB3), in seven possible equi-ratio combinations. Other chemical constituents that are normally released from different textile processing units were also added to replicate a practical scenario. From this study, MgCl2/Lime was found to be a superior coagulant system as compared to FeSO4.7H2O/Lime, FeSO4.7H2O/NaOH and MgCl2/NaOH. Keywords—Coagulation, Color removal, Magnesium chloride, Textile wastewater

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Iron Electrode in Textile Industry Wastewater Treatment Using Electro-fenton Technique: Experimental and Statistical Study

The application of synthetic colors in textile industries and their entry into the water and groundwater is an environmental problem because of being very toxic material. The synthetic colors which are used in textile dyeing (plyacrilic and polyester) are usually dispersing colorants. They derive the azo and anthraquinone chemicals. Electro-Fenton process is an efficient technique which can deg...

متن کامل

Decolorization of Ionic Dyes from Synthesized Textile Wastewater by Nanofiltration Using Response Surface Methodology

Decolorization of aqueous solutions containing ionic dyes (Reactive Blue 19 and Acid Black 172) by a TFC commercial polyamide nanofilter (NF) in a spiral wound configuration was studied. The effect of operating parameters including feed concentration (60-180 mg/l), pressure (0.5-1.1 MPa) and pH (6-10) on dye removal efficiency was evaluated. The response surface method (RSM) was utilized for th...

متن کامل

Decolorization and Degradation of Basic Blue 3 and Disperse Blue 56 Dyes Using Fenton Process

In this study, oxidative discoloration of Basic blue3 (B.B3) and Disperse blue56 (D.B56) dyes in synthetic textile wastewater has been studied using Fenton (Fe2+/H2 O2 ) process. The Fenton’s technique showed satisfactory color removal efficiency. The operating parameters such as concentration of Fe2+, dose of H2 O2 , initial concentration of dye, time contact, initial volume of wastewater that...

متن کامل

Electerocoagulation of Blue and Mixed Azo Dyes and Application in Treating Simulated Textile Effluent

This study investigated the efficiency of electerocoagulation (EC) in removing color from synthetic and simulated textile wastewater. The study on decolorization of mixed dyes is a step toward an effective treatment of textile wastewater. Two representative reactive dye molecules were selected for the synthetic dye wastewater, a blue dye alone and mixed dye (black, blue, red, 1:1:1v/v). The EC ...

متن کامل

Study of ZnO nano particles photocatalytic process efficiency in decolorization of methylene blue and COD removal from synthetic wastewater

Background : Effluents containing synthetic dyes are hazardous to ecological systems and public health. Methylene blue is an important chemical aromatic dye which commonly used in textile industries. Due to being aromatic, it is often toxic, carcinogenic and mutagenic. The goal of this study was to investigate the efficiency of ZnO nano particles photocatalytic process for decolorization of met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012